
Public

SMART CONTRACT AUDIT REPORT

for

Shell Token

Prepared By: Xiaomi Huang

PeckShield
October 10, 2024

1/16 PeckShield Audit Report #: 2024-238

contact@peckshield.com

Public

Document Properties

Client OTSea
Title Smart Contract Audit Report
Target Shell
Version 1.0
Author Xuxian Jiang
Auditors Daisy Cao, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author Description
1.0 October 10, 2024 Xuxian Jiang Final Release

1.0-rc September 22, 2024 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/16 PeckShield Audit Report #: 2024-238

Public

Contents

1 Introduction 4
1.1 About Shell . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 8
2.1 Summary . 8
2.2 Key Findings . 9

3 ERC20 Compliance Checks 10

4 Detailed Results 13
4.1 Redundant State/Code Removal . 13

5 Conclusion 15

References 16

3/16 PeckShield Audit Report #: 2024-238

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the Shell token
contract, we outline in the report our systematic method to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistency between smart contract code
and the documentation, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of the smart contract exhibits no ERC20 compliance issues or
security concerns. This document outlines our audit results.

1.1 About Shell

Shell is a normal ERC20-compliant token contract that allows the ShellFactory (the owner) to mint
and burn tokens. This audit covers this specific token contract and the ShellFactory contract with
a focus on the token’s ERC20-compliance and security. The basic information of the audited contract
is as follows:

Table 1.1: Basic Information of Shell Token Contract

Item Description
Name Shell
Type Ethereum ERC20 Token Contract

Platform Solidity
Audit Method Whitebox

Audit Completion Date October 10, 2024

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/OT-Sea/Shell-EVM.git (c9b7b1a)

And here is the commit ID after all fixes for the issues found in the audit have been checked in.

• https://github.com/OT-Sea/Shell-EVM.git (98ac292)

4/16 PeckShield Audit Report #: 2024-238

Public

1.2 About PeckShield

PeckShield Inc. [4] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading ser-
vices and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [3]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

We perform the audit according to the following procedures:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

5/16 PeckShield Audit Report #: 2024-238

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• ERC20 Compliance Checks: We then manually check whether the implementation logic of the
audited smart contract(s) follows the standard ERC20 specification and other best practices.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead of Transfer

Costly Loop
(Unsafe) Use of Untrusted Libraries
(Unsafe) Use of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Approve / TransferFrom Race Condition

ERC20 Compliance Checks Compliance Checks (Section 3)

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

To evaluate the risk, we go through a list of check items and each would be labeled with a severity
category. For one check item, if our tool does not identify any issue, the contract is considered safe
regarding the check item. For any discovered issue, we might further deploy contracts on our private
testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to
demonstrate the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

6/16 PeckShield Audit Report #: 2024-238

Public

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/16 PeckShield Audit Report #: 2024-238

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Shell token contract. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logics, examine
system operations, and place ERC20-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 1

Informational 0

Total 1

Moreover, we explicitly evaluate whether the given contracts follow the standard ERC20 specifi-
cation and other known best practices, and validate its compatibility with other similar ERC20 tokens
and current DeFi protocols. The detailed ERC20 compliance checks are reported in Section 3. After
that, we examine a few identified issues of varying severities that need to be brought up and paid
more attention to. (The findings are categorized in the above table.) Additional information can be
found in the next subsection, and the detailed discussions are in Section 4.

8/16 PeckShield Audit Report #: 2024-238

Public

2.2 Key Findings

Overall, no ERC20 compliance issue was found and our detailed checklist can be found in Section 3.
While there is no critical issue, the implementation can be improved by resolving the identified issue
(shown in Table 2.1), including 1 low-severity vulnerability.

Table 2.1: Key Shell Audit Findings

ID Severity Title Category Status
PVE-001 Low Redundant State/Code Removal Coding Practices Resolved

Besides recommending specific countermeasures to mitigate the above issue(s), we also emphasize
that it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for our detailed compliance checks and Section 4 for elaboration of reported issues.

9/16 PeckShield Audit Report #: 2024-238

Public

3 | ERC20 Compliance Checks

The ERC20 specification defines a list of API functions (and relevant events) that each token contract
is expected to implement (and emit). The failure to meet these requirements means the token
contract cannot be considered to be ERC20 -compliant. Naturally, as the first step of our audit,
we examine the list of API functions defined by the ERC20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic of the
audited contract(s).

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

10/16 PeckShield Audit Report #: 2024-238

Public

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the audited
Shell token contract. In the surrounding two tables, we outline the respective list of basic view-only

functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-adopted
ERC20 specification.

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approval() event Is emitted on any successful call to approve() ✓

In addition, we perform a further examination on certain features that are permitted by the ERC20

specification or even further extended in follow-up refinements and enhancements, but not required
for implementation. These features are generally helpful, but may also impact or bring certain
incompatibility with current DeFi protocols. Therefore, we consider it is important to highlight them
as well. This list is shown in Table 3.3.

11/16 PeckShield Audit Report #: 2024-238

Public

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausable The token contract allows the owner or privileged users to pause the token
transfers and other operations

—

Upgradable The token contract allows for future upgrades —
Whitelistable The token contract allows the owner or privileged users to whitelist a

specific address such that only token transfers and other operations related
to that address are allowed

—

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

✓

Burnable The token contract allows the owner or privileged users to burn tokens of
a specific address

✓

12/16 PeckShield Audit Report #: 2024-238

Public

4 | Detailed Results

4.1 Redundant State/Code Removal

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ShellFactory

• Category: Coding Practices [2]

• CWE subcategory: CWE-563 [1]

Description

The ShellFactory contract is designed to hold locked funds and release them to users after the unlock
timestamps. During the analysis of this ShellFactory contract, we notice it has a redundant parent
contract Ownable, which can be safely removed.

In the following, we show its constructor routine, i.e., constructor(). This routine is given
a parameter _multiSigAdmin with the intention of have a multi-sig admin account to act as the
privileged owner. However, this factory contract does not have any privileged functions that need to
be guarded with the onlyOwner modifier.

35 contract ShellFactory is Ownable , TransferHelper {
36 /**
37 * @dev underlying token => unlock timestamp => ShellToken contract
38 */
39 mapping(ERC20 => mapping(uint256 => ShellToken)) public shellTokens;
40
41 uint256 private constant FRIDAY_20_SEPTEMBER_2024_3PM_CT = 1726862400;
42
43 constructor(address _multiSigAdmin) Ownable(_multiSigAdmin) {
44 }
45 ...
46 }

Listing 4.1: The ShellFactory Contract

13/16 PeckShield Audit Report #: 2024-238

Public

Recommendation Consider the removal of the Ownable parent contract as well as the need of
the input parameter for the above constructor() routine.

Status This issue has been resolved by the following commit: 80835c6.

14/16 PeckShield Audit Report #: 2024-238

https://github.com/OT-Sea/Shell-EVM/commit/80835c6

Public

5 | Conclusion

In this security audit, we have examined the Shell contract design and implementation. During our
audit, we first checked all respects related to the compatibility of the ERC20 specification and other
known ERC20 pitfalls/vulnerabilities and found no issue in these areas. We then proceeded to examine
other areas such as coding practices and business logics. Overall, no issue was found in these areas,
and the current deployment follows the best practice. Meanwhile, as disclaimed in Section 1.4, we
appreciate any constructive feedbacks or suggestions about our findings, procedures, audit scope,
etc.

15/16 PeckShield Audit Report #: 2024-238

Public

References

[1] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[2] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[3] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[4] PeckShield. PeckShield Inc. https://www.peckshield.com.

16/16 PeckShield Audit Report #: 2024-238

https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Shell
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	ERC20 Compliance Checks
	Detailed Results
	Redundant State/Code Removal

	Conclusion
	References

